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Abstract. We consider the depletion interaction between mesoscopic particles and non-adsorbing
free polymer chains. For one and two spherical particles we investigate the depletion profiles of
monomer and end densities of the embedding polymer solution. The profiles take a finite limit for
large Flory radius and Edwards screening length. The influence of the excluded volume interaction
between chain monomers is studied for the case of one particle. We demonstrate how the polymer-
induced force between two particles emerges from the monomer density profile near the surface of
one of the particles. The evaluation of the polymer densities follows from a new type of ‘fusion
procedure’ in the equivalent field theory.

The depletion interaction between mesoscopic dissolved particles and non-adsorbing free
polymer chains is one of the fundamental interactions in colloid physics. Recent experiments
on individual colloidal particles [1, 2] and simulations [3] have lead to a renewed interest.
Although this entropy-dominated interaction has been studied theoretically since the fifties,
exact results [4–10] are still rare. Since solutions of long flexible polymers are a beautiful
example of a ‘critical system’ [11], one may exploit the powerful methods of critical phenomena
and field theory.

The properties of a single dissolved spherical particle depend on the ratios of its radius
R and mesoscopic lengths such as the unperturbed Flory radius R or the screening length
ξ [11] that characterize the polymer solution. The depletion effects for large particle size
R � R, ξ closely resemble those for planar walls [4, 6]. Here we consider the other extreme—
small particle size R � R, ξ—and investigate the depletion of the densities M(r) of chain
monomers and E(r) of chain ends near one and two particles in the solution. We normalize the
densities so that they approach 1 in the bulk solution. At large distances from the particle(s)
depletion effects have been studied before [9, 10]. Here we consider arbitrary ratios of the
distance and the size, provided both are much smaller than R and ξ . The case of small particle
size and long flexible chains is dominated by configurations where the chain coils around the
particle(s), and approximations that treat the chains as non-deformable [4] fail completely.

First we study the influence of the excluded volume interaction (EVI) between chain
monomers on the depletion of the monomer density Ms(r) around a single spherical particle.
Here r is the distance from the centre of the sphere. The variation of Ms (or Es) with R, r

in the domain R, r � R, ξ is independent of R, ξ and only depends on the ratio ρ = r/R†.
Neglecting the EVI in the case of a dilute solution [9], i.e. considering a solution of ‘ideal
chains’, or treating a semidilute solution of strongly interpenetrating chains in mean field
fashion [8] leads to the same simple result Ms,id = (1 − ρ−(d−2))2. Here d is the dimension

† In our case of finite obstacles such as one or two spheres, the normalized densities E and M remain finite in the limit
R, ξ → ∞. In the case of an infinitely extended planar wall the densities vanish in this limit for all finite distances
from the wall.

0953-8984/00/SA0227+06$30.00 © 2000 IOP Publishing Ltd A227



A228 E Eisenriegler

of space, and we assume d > 2. The small spherical particle significantly perturbs the bulk
density within a distance of order R from its surface (while for a large particle or a planar
wall the corresponding ‘healing’ distance is of order R or ξ ) (see previous footnote). For a
dilute solution of chains with EVI, Ms is different from above. In the limit R � r in which
r is far away from the sphere, one finds that Ms → 1 − αρ−x . Here x = d − 1/ν with
ν the Flory exponent [11], and the amplitude α is the product of the universal amplitudes A

and σ introduced in [10]. Table 1 shows that x and α are larger and smaller, respectively,
than the results xid = d − 2 and αid = 2 for ideal chains. Thus the EVI leads to a smaller
depletion effect. In the other limit r −R � R in which r is close to the surface of the sphere,
Ms → β(ρ − 1)1/ν . Here β is given by ABx/Sd with the universal amplitude B defined in
[12] and with Sd the surface area of the d-dimensional sphere of radius unity. In this limit the
EVI also leads to a decrease in the depletion effect, compare the values of 1/ν and β in table 1
which are smaller and larger, respectively, than the values 1/νid = 2 and βid = (d − 2)2 for
ideal chains.

Table 1. Exponents and amplitudes in the power law behaviour for r/R → ∞ and r/R → 1 of
the monomer density profile around a single spherical particle in spatial dimension d.

d x xid α αid 1/ν 1/νid β βid

4 2 2 2 2 2 2 4 4
3 1.33 1 ≈ 1.3 2 1.67 2 ≈ 1.3 1
2 2

3 — 1.061 — 4
3 — 0.812 —

For dilute self-repelling chains in a plane (d = 2) the ρ-dependence of the depletion
profile of the monomer density outside a circular disc can be obtained in closed form. For
ρ − 1 <
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where 3F2 is a generalized hypergeometric function and the expression for ρ−1 >
√

2 follows
by analytic continuation. The result is shown in figure 1 and reduces to the above-mentioned
limiting forms for ρ → ∞ and ρ → 1, which are also shown.

Situations with well separated length scales such as R, r � R can be handled most
efficiently in terms of short distance expansions or fusions. On a large length scale the small
object can be viewed in leading order as a point-like isotropic perturbation with an amplitude
that depends on its internal structure. This has been used before to describe a small spherical
particle in a critical system for R � r,R [9, 10, 13] or two particles a distance D apart for
R,D � r,R [10]. To describe the case of one particle with R, r � R and to derive (1), we
fuse the density operator at r with the spherical particle centred at the origin. In the standard
field theory (FT) of an n-component field Φ equivalent to the statistics of a self-repelling chain
in the limit n → 0 [7, 11], this yields

〈. . . · Φ2(r)〉s → 〈. . . · Φ2(0)〉bulkA(ρ). (2)

Here 〈·〉s and 〈·〉bulk denote cumulant averages over Φ-configurations in the presence and
absence of the sphere [9, 10]. The quantity Φ2(r) is the energy density in the FT, normalized
so that 〈Φ2(r)〉bulk vanishes at the critical pointT = Tc of the FT. The ellipses denote fluctuating
fields Φ or Φ2 located at distances from the sphere much larger than R and r . The correlation
length of the FT must also be much larger than R and r . Equation (2) is also expected to apply
if the ellipses represent the square of integrals (

∫
dr′ Φ(r′))2, in which case the two averages

in (2) yield monomer densities around the sphere and in the bulk, respectively, on applying a
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Figure 1. Monomer density Ms around a circular disc in a two-dimensional dilute solution of
long flexible chains with excluded volume interaction between monomers as a function of the ratio
ρ = r/R of the distance r from the centre and the radius R of the disc. The full curve is the result
given by equation (1). The limiting forms for ρ → 1 and ρ → ∞ given in the text with exponents
and amplitudes for d = 2 in table 1 are shown as crosses.

Laplace transform with respect to the deviation T − Tc from the critical point. The amplitude
function A in (2) is independent of T − Tc, and therefore A(ρ) is to be identified with Ms(r).
Since A is also independent of the type of field represented by the ellipses, (2) allows one to
relate Ms to other quantities, such as the correlation function of energy densities of the FT
at the critical point in the presence of the sphere. (Here one replaces the ellipses in (2) by
Φ2(r′) and identifies A as the limit of the ratio of critical energy density correlation functions
in the presence and absence of the sphere as r′ → ∞.) In d = 2 the latter quantity can be
obtained via a conformal transformation from the known [14] result in the half plane, which
leads to (1). In general dimension d the expression for the amplitude β given above (and
used to obtain the β values in table 1) follows by the same reasoning from the critical energy
density correlation function as r tends to the planar boundary of the half-space. The amplitude
function A also appears in the leading singular T −Tc dependence of the energy density profile
in the presence of the sphere 〈Φ2(r)〉s , which is given by the singular dependence of the bulk
density 〈Φ2(0)〉bulk multiplied by A(ρ). This can easily be checked for the simple case of a
Gaussian FT, equivalent to ideal chains, in which the amplitude function equals Ms,id (r).

For the end density one can use a fusion relation similar to (2) but with Φ2 replaced by
Φ. Its amplitude function equals Es(r) and is identified as the limit of the ratio of critical
order-parameter correlation functions as r′ → ∞. It can be determined once the order-
parameter correlation function is known for the n-component theory in the half-space at
criticality.
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Next we consider two spherical particles of radius R with closest surface-to-surface
distance D. As above the monomer and end densities can be inferred from field theoretical
correlation functions at criticality in the space outside the two particles. These functions can
be obtained by a conformal transformation from the highly symmetric space between two
concentric spheres. The polymer densities can be predicted for ideal chains in d > 2 since the
correlation functions are explicitly known [13] for the equivalent Gaussian FT†. Placing the
centres of the two particles on the z-axis of the coordinate system at ±(R+D/2), and denoting
the particles by + and −, one finds that the end density at point r depends on its z-component
z and its distance r from the origin according to

Ess,id = 1 − (2z0)
2δ(Q+Q−)−δ/2

∞∑
l=0

C
(δ)
l (η)

(Q+/Q−)λ/2 + (Q−/Q+)
λ/2

θ−λ + 1
. (3)

Here l are integers, λ = l + δ, δ = (d − 2)/2, Q± = r2 + z2
0 ± 2zz0, η = (r2 − z2

0)/
√
Q+Q−

and Cl are Gegenbauer polynomials and z0 and θ are defined via

z0 =
√
(2R + D/2)D/2 = (θ−1/2 − θ1/2)R/2 0 � θ � 1. (4)

As a consequence θ−1/4 − θ1/4 is equal to (D/R)1/2. Two known limiting cases are contained
in the general result (3). (i) For fixed radius R and fixed distance r+ of r from the centre of
particle +, (3) reduces to the single-sphere result Es,id = 1 − (R/r+)

d−2 as D → ∞. (ii) For
r → ∞ with D, R fixed, Q± → r2, η → 1, and Ess,id in (3) tends to 1 − (R/r)d−2m with

m = 2(θ−1/2 − θ1/2)d−2
∞∑
l=0

(
l + d − 3

l

)
/(θ−λ + 1)

depending on D/R. The amplitude m is the amount by which two spheres perturb the polymer
system at large length scales more strongly than a single sphere with radius R, and was
introduced before in [10].

As a new application of (3) we calculate the monomer density near the surface S+ of
particle +. This is interesting since it is related by the density–force relation [12]

nbR1/ν
∫

dS+ [M(as)
ss /(r+ − R)1/ν] cosϑ = Bf/kBT (5)

to the local pressure, which the polymers exert onto the surface element dS+. Here f is the
magnitude of the total force pushing particle + towards particle −, nb is the density of chains
in the bulk, M(as)

ss is the normalized monomer density asymptotically close [12] to S+, and
cosϑ is the projection of the inward pointing surface normal onto the direction of the total
force. The universal amplitude B depends on the precise definition of R. We define dR2 as
the unperturbed mean square end to end distance of a single chain (i.e. R equals the quantity
Rx of [10, 12]). For our long ideal chains 1/ν = 2 and M(as)

ss,id/(r+ − R)2 = (∂⊥Ess,id )
2 with

∂⊥ denoting a normal derivative at the surface S+. From (3) one finds

∂⊥Ess,id = 1

R

(θ−1/2 − 2η + θ1/2)d/2

θ−1/2 − θ1/2

∞∑
l=0

C
(δ)
l (η)

2λ

θ−λ/2 + θλ/2
(6)

where η = [2 + (θ−1/2 + θ1/2) cosϑ]/[2 cosϑ + θ−1/2 + θ1/2]. The monomer density and local
pressure is larger near the surface point L of particle + with the largest distance from particle
− (the point on the z-axis at 2R +D/2 with η = cosϑ = 1) than near the surface point S with
the smallest distance from particle − (the point at D/2 with η = cosϑ = −1), see figure 2.

† In the case of ideal chains our representation of E as the ratio of the critical order parameter correlation functions with
r′ → ∞ reduces to the harmonic function Ess,id in (3), which vanishes on the surface of the spheres and approaches
1 far away from the spheres.
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Figure 2. Density–force relation for two spherical particles + and − in a solution of ideal chains
in three dimensions (see equation (5)). The monomer density near the surface S+ of particle + is
determined by the normal derivative at the surface ∂⊥Ess,id of the bulk-normalized end density.
Results from (6) for R∂⊥Ess,id at the surface points with cosϑ = 1 (point L), cosϑ = 0 and
cosϑ = −1 (point S) are denoted, respectively, by asterisks, triangles, and crosses. The magnitude
of the reduced force fid,d=3/(kBT nbR2) acting on particle + is given by the broken curve. Note
the minimum at D ≈ 1.6R in the results for point L with a value 0.904 which is only slightly
smaller than the value 0.916 (Catalan’s constant) at D = 0.

For distant spheres the leading contribution to R∂⊥Ess,id is the isotropic contribution d −2 of a
single sphere, while the leading anisotropic contribution is given by cosϑ(R/D)d−1(d − 2)d.
Using expression (6), we have checked the density force relation (5) for arbitrary D/R by
analytically evaluating the surface integral. With the value B = Bid = 2 for ideal chains
this leads to the expression nbR2Aid(∂m/∂D)Rd−2 for fid/kBT , which is consistent with
equation (3.13) in [10] for the potential of mean force. Here the quantity m is given above,
and Aid = 2πd/2/-((d/2) − 1).

It is interesting to compare the depletion attraction between two small spheres (with
R � R, ξ ) with the attraction between one small sphere and a planar wall [15]. In both cases
the total free energy gain on changing the distance between the two objects from ∞ to zero is
of order Rd−1/ν times the monomer density in the bulk of the polymer solution. However, the
range of the polymer induced interaction is of order R in the case of the two spheres and of
order R or ξ in the case of the sphere near a planar wall.

For one and two spherical particles immersed in a low-density solution of long flexible
non-adsorbing polymer chains, we have derived exact results for the depletion profiles of the
densities of chain monomers and chain ends. We allow for arbitrary ratios of the particle
size, the distance between the particles, and the distance of r from the particle surfaces, but
assume that these lengths are much smaller than the unperturbed chain size and screening
length. Density interference effects and the force between two particles are studied for ideal
chains (see equations (3)–(6) and figure 2). For a single particle the influence of the excluded
volume interaction between chain monomers is investigated in detail (see table 1, equation (1)
and figure 1). Since interpenetration effects of different chains do not show up on the length
scale we considered, the above results for chains with excluded volume interaction between
monomers apply both to dilute and semidilute solutions†. Similarly, the above results for ideal

† This is similar to the well known behaviour of the monomer density correlation function in a polymer solution in free
space, which at short distances becomes independent of the degree of overlap between the chains and is determined
by single-chain properties.
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chains will also appear in a mean field treatment of semidilute solutions with large screening
length. Table 1 shows the importance of the (single-chain) excluded volume effects for the
depletion profile near a small particle. Beyond their contribution to the physical understanding
of polymer depletion, these exact results also provide a check for more versatile but approximate
methods.
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Note added in proof. The pressure on the surface of a single spherical particle is given by (β/B)kBT nb(R/R)1/ν ,
compare table 1 and equation (5). The product of the pressure and the surface area of the particle equals the derivative
with respect to R of the free energy to immerse the particle in the polymer solution [5, 9, 10, 15]. This relation between
the free energy and the amplitude β in the monomer density profile near the particle surface applies to particles of
arbitrary size. While β is a constant for small particles (see table 1), it depends on length ratios for arbitrary particle
size. For example, for a solution of ideal chains in three dimensions β = 1 + 4

√
2/πR/R + 2(R/R)2.
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